Scientific Program

Conference Series Ltd invites all the participants across the globe to attend 6th International Conference on Vascular Dementia Amsterdam, Netherlands.

Day 3 :

Keynote Forum

Ad Verheul

Centre De Hartenberg, Netherlands

Keynote: Snoezelen in the 24 care for people with dementia
Conference Series Vascular Dementia 2017 International Conference Keynote Speaker Ad Verheul photo

Ad Verheul has been working at De Hartenberg, a centre for people with severe profound mental disabilities, since 1973. The centre is part of ´s Heeren Loo Zorggroep, a leading Dutch organisation in mental healthcare. He started as a therapist and in 1974 he and his colleague Jan Hulsegge, a music therapist, defined the concept of Snoezelen.  Since 1980 Ad Verheul has been the organiser and main spokesman of seminars on the subject of Snoezelen worldwide. Currently Ad Verheul is retired and before his retirement he acts as senior advisor for special projects. He organises seminars and courses in Snoezelen and special activities for people with severe profound mental disabilities at the centre De Hartenberg in the Netherlands and in many other countries. At this moment he act as board member of the international Snoezelen-Multisensory Environment Association ( ISNA-MSE, ) The ISNA has members in 45 countries and research contacts with 22 universities worldwide.


Main philosophy and history of Snoezelen/Multi-Sensory Environment. Snoezelen/Multi-Sensory Environment in several research studies has shown the positive effectiveness of the method with patients who have dementia. The practice of Snoezelen in the care for people with dementia and some results of scientific research on the effects of Snoezelen. The integration of the concept of Snoezelen/Multi-Sensory Environment in the daily care of nursing homes. From recent study, Snoezelen/Multi-Sensory Environment has proven to be effective in decreasing the amount of disruptive and aggressive behaviors among individuals with Alzheimer’s disease. With a decrease in such disruptive behaviors and a reduction of medications, the caregivers will be more able to appropriately care for their loved ones at home and within the community. In conclusion these results point out that Snoezelen/Multi-Sensory Environment has also positive effects on the quality or working life of staff members in psychogeriatric care.

Keynote Forum

Mootaz Salman

Sheffield Hallam University/ Biomedical research Center, UK

Keynote: The mechanism of Aquaporin expression and translocation in cerebral pathologies
Conference Series Vascular Dementia 2017 International Conference Keynote Speaker Mootaz Salman photo

Mootaz Salman is a pharmacist and researcher PhD student at the Biomolecular Sciences Research Centre (BMRC) at Sheffield Hallam University, working with Prof. Nicola Woodroofe and Dr. Matthew Conner’s research group and a member of the multi-institute Aquaporin research collaboration. His research interest focus on the identification of new drug targets for brain oedema and epilepsy through his work on the special water channels called “Aquaporins”. Mootaz graduated with Outstanding Distinction in his MSc winning the Sheffield Hallam University prize for the most scientific contribution and ranked 1st in year. His PhD research requires the skilled use of numerous techniques ranging from standard biochemical and molecular biology to cutting edge micro-array and laser confocal microscopy.

Mootaz is an international ambassador at Sheffield Hallam University, ambassador for British Society of Experimental Biology (SEB); and STEM ambassador since 2014. He has given four invited oral presentations and talks at major international conferences in Canada, Netherlands, Romania and Japan along with three talks at a national level. He is also an active member in a number of scientific societies nationally and internationally including USA, Canada and Japan. He has been selected to be an abstract reviewer at two major international conferences; Brain 2015 in Canada and also for the upcoming Brain 2017 in Berlin, along with being an abstract reviewer and a member of poster judgement panel during the North of England Postgraduate Conference (NEPG) which is the UK's largest annual postgraduate conference for medical biosciences. Mootaz has successfully participated in organising a number of national and international high profile conferences and also he has been selected to chair scientific sessions at two national events.


Water is the principal constituent of cells and tissues in the animal kingdoms, and water exchange is essential for life. Water can pass through cell membranes by diffusion, but the rapid control of water flow into and out of cells in continually changing osmotic environments is mediated by a family of membrane proteins called aquaporins (AQPs), which are required to ensure appropriate membrane permeability to water molecules. At least 13 members of this family (named from AQP0 to AQP12) occur in mammals and are subdivided according to their Permeability characteristics into three major functional groups: 1) water-channels, 2) aquaglyceroporins, and 3) AQPs of unknown specificity. The wide distribution of AQPs throughout the body and their involvement in many physiologies and pathologies makes them a valuable and important target for drug therapies. Water homeostasis in the brain is crucial for maintaining the normal function of the central nervous system (CNS), which is considered to be very sensitive to any raise in intra-cranial pressure. Because of the rigid brain encasement, brain oedema could rapidly turn into a serious, life-threatening condition. It has been suggested that AQPs play a key role in maintaining brain homeostasis. At least six AQPs have been identified and characterized in the rodent brain: 1, 3, 4, 5, 8, and 9; 1, 4 and 9 are the best-studied examples. This project aimed to identify and study the molecular tools that could manipulate the translocation of brain AQPs as promising drug targets. Plasmid DNA encoding AQP4-, AQP1-, or AQP9-GFP fusion protein-was transfected into an immortalised HEK293 cell line; secondly into a more physiologically relevant cell line of U373 MG astrocytes and primary rat astrocytes. The responses of these AQPs were visualised following hypotonicity/hypertonicity-mediated translocation using confocal microscopy. The transfection protocol and reagents were optimized for each AQP in the different cell lines. Microarray on primary human astrocytes has been used to investigate the possible mechanisms involved in the neuroprotection effect. RT² Profiler PCR Arrays were used to confirm the transcriptional capacity along with quantitative real-time RT-qPCR for AQP1, 3, 4, 5, 8, 9 and calmodulin. Sandwich ELISA has been used to investigate the protein levels of AQP4. Cell surface biotinylation (CSB) has been to validate AQP4 translocational profile. In this work, successful optimisation of transfection of the investigated brain AQPs (AQP4, AQP1, and AQP9) in both HEK293 and U373 MG astrocytes, was achieved. The study also showed rapid and reversible, hypotonicity-mediated AQP translocation to the cell membrane in both HEK and U373 MG cells and may indicate the role of hypertonicity-mediated internalization of AQPs back to the cell for AQP4 and AQP1 in HEK293 cells. CSB data confirm; for the first time, the translocational profile of endogenous AQP4 in primary astrocytes. The microarray data and KEGG pathway analysis suggested the involvement of MAPK and the want signalling pathways which is confirmed by the data from 184 different genes from the RT² Profiler PCR Arrays. All the investigated cerebral AQPs genes were expressed and RT-qPCR data show significant upregulation AQP4 accompanied by a significant down-regulation of AQP1,5,9 and calmodulin. ELISA results confirm those findings for the investigated AQP4 and proteins. In conclusion, AQPs are important drugs targets and have a role in many CNS pathologies. Understanding the molecular mechanism of their regulation could lead to novel drugs that target the AQPs in astrocytes rather than the neurons which will have a far less adverse drug reactions.

  • Animal Models and Translational Medicine
Location: Amsterdam


David Truswell

Culture Dementia UK, United Kingdom


Steven Benvenisti

Quinnipiac University School of Law, USA

Session Introduction

Stefanos Ioannidis

Royal Free Hospital, UK

Title: Posterior Cortical Atrophy: A case of late-onset disease presenting with memory loss

Time : 12:00-12:20


Dr. Stefanos Ioannidis is currently working at Royal Free Hospital in United Kingdom. Dr. Ioannidis has published several original research papers in reputed and peer reviewed journals and also participated into several scientific meetings. His research mainly focuses on the neurodegenerative disorders and dementia.


Introduction: Posterior cortical atrophy (PCA) is a neurodegenerative disorder of progressive dementia, preceded by visuospatial, visuoperceptual deficits, and visual agnosia. It has an age of onset at 50 to 65 years. Here, we describe a case of PCA presenting at an older age with predominant complaint of memory loss.

Case Presentation: 80-year-old, right-handed man with education level at 14 years of age, presented to the memory clinic with 9-month history of episodic memory loss. This was reflected in his Addenbrooke’s cognitive examination III (52/100). He also reported visual impairment for 1 year and inability to judge distances when climbing stairs despite lack of finding in his ophthalmology assessment. He retained his ability to read albeit relying on newspapers with contextual cues such as colorful illustrations. Clinical examination and neuropsychometric evaluation showed optic ataxia, simultanagnosia, visuospatial and visuoperceptual impairment (Rey Complex figure) as well as impaired praxis (Rivermead Behavioural Memory Test). Computed tomography (CT) showed posterior parietal lobe atrophy with preserved hippocampus (Fig A). Positron emission tomography (PET) showed reduction of uptake in the posterior cortex (Fig B), in keeping with a diagnosis of PCA.

He was treated with donepezil and referred to PCA support groups.

Discussion: In elderly patients presenting with impaired memory, the diagnosis of PCA needs to be considered. Patients often develop a compensatory strategy with the visual deficit while disabling cognitive difficulties take hold, which mask the presence of PCA. Moreover, the emphasis on age as part of the diagnostic picture may inadvertently exclude older patients given that younger, working age patients are more likely to be acutely aware of visual problems and thus present to physicians. PCA may therefore be more common in older adults than previously suspected. Correctly identifying the disease process is crucial for patient management including provision of help in perceptual activities.


Hanan Sheikh Ibrahim is a Clinical Assistant Professor at the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Ohio, a Consultant Physician and a Quality Officer at the Cleveland Clinic Abu Dhabi. She was trained at Cleveland Clinic in Ohio, USA under the tutelage of Dr. Robert Palmer, concept originator of the Acute Care of Elderly (ACE) unit which was modeled internationally. Then she pioneered in the Geriatric Care in the UAE by establishing the first MACE unit and the first Geriatric Core Curriculum for resident physicians. She received her MD from Damascus University, Syria where she specialized in Pulmonary Medicine then she moved to US where she completed her Residency in Internal Medicine at the University Of Pittsburgh School Of Medicine in Pittsburgh, Pennsylvania, US. She completed her Fellowship in Geriatric Medicine at Cleveland Clinic, Ohio. She is Board Certified in Internal and Geriatrics Medicine.


Case Report: Fifty-two year old male with PMH of heavy smoking, chronic kidney disease (CKD), obesity, type 2 diabetes complicated with retinopathy, nephropathy and peripheral neuropathy, and depression presented with poorly controlled diabetes, recent ICU admission with hypoglycemia and loss of consciousness. He has positive pin brick sensation stock-glove in the upper and lower extremities, on neuro exam and antalgic gait, he ambulates with point cane. On CGA (Comprehensive Geriatric Comprehensive), he was found to have 3 impaired IADL domains (driving, financing and handling insulin). MMSE: 20/30, impaired clock drawing test impaired speed, attention and executive skills, geriatric depression scale (GDS) was 4/15, FRAIL scale was 4/5. His lab reports revealed CKD stage III, he has normal B12, folate and Hba1C average above 8. His MRI revealed white matter disease, pontine infarct, right thalamic lacunar infarct and left lenticular lacune as well. Patient was assigned a care taker to supervise his insulin and his glycemic control improved as well as his overall compliance.
Conclusion: Failure to identify dementia in frail younger population with high vascular risk constitutes health hazards and poor disease control. Primary care clinicians may fail to recognize cognitive impairment during clinic visits using routine history and physical white matter disease and non-strategically located infarct may be completely asymptomatic, however early identification in high risk for dementia group can detect early executive dysfunction and subsequently eliminate health hazard and prevent further deterioration.